
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

1 Instructor: Daniel Llamocca

Notes - Unit 5

HARDWARE AND SOFTWARE DEVELOPMENT TOOLS FOR THE HCS12
 Hardware: Dragon12-Light Board pre-loaded with Freescale Serial Monitor for CodeWarrior. The board includes the

MC9S12DG256BCPV (112 LQFP package). The DDrraaggoonn1122--LLiigghhtt BBooaarrdd MMaannuuaall contains a lot of information on the
components connections to the microprocessor. Among many other components, the Dragon12-Light Board includes:
 Two 10-bit DAC for testing SPI interface and generating analog waveforms
 Four 7-segment displays
 Eight LEDs
 An eight-position DIP Switch
 Four push button switches
 Speaker to be driven by timer, DAC, or PWM
 4x4 keypad (made of push button switches)
 CAN Port
 RGB color LED

The crystal frequency is 8 MHz and this results in a 4 MHz bus speed. However, we can boost the bus speed to 24 MHz by
configuring the PLL.

 Software: CodeWarrior for HCS12(X) Microcontrollers (Classic) v. 5.1 (Special Edition). We can create projects in purely

Assembly Code, in C, or in mixed C/Assembly. We will use the software in two modes:
 Full Chip Simulation: The Board is not required to be connected. The register and memory data are simulated values.
 HCS12 Serial Monitor: The Board is required to be connected. The registers and memory data are the actual ones.

I/O REGISTERS
The DDeevviiccee UUsseerr GGuuiiddee shows the detailed register map (Section 1.6) of the MC9S12DG256 from $0000 to $03FF (1KB). The

entire memory map of the device is shown in Figure 1.2. Here we will use some of the registers that are linked to the most

common components in the Dragon12-Light Board. The mc9s12dg256.inc file contains all the numeric equivalent of the

port numbers (and memory positions too):

PPOORRTTAA
This is General Purpose I/O (GPIO) register located at $0000. In the Board, it is connected to the keypad. If we use the

keypad, we must configure PORTA so that the bits 7 to 4 are outputs and the bits 3 to 0 are inputs. This is done via the DDRA
register located at $0002.

For Keypad: DDRA  $F0 = 1111000. ‘1’ means output, ‘0’ means input

PPOORRTTBB
This is General Purpose I/O (GPIO) register located at $0001. In the Board, it is connected to the LEDs. If we use the LEDs,

we must configure PORTB so that the all the bits are outputs. This is done via the DDRB register located at $0003.

For LEDs and 7-segment displays: DDRB  $FF

PPOORRTTPP
This is General Purpose I/O (GPIO) register located at $0258. In the Board, the bits 3 to 0 are connected to the cathodes of

the 7-segment displays. The bits 4 to 6 are connected to the RGB LED. To use it with the 7-segment display and the RGB LED,

we must configure PTP so that the bits are outputs. This is done via the DDRP register located at $025A.

For 7-segment displays and RGB LED: DDRP  $FF

PPOORRTTHH
This is General Purpose I/O (GPIO) register located at $0260. In the Board, it is connected to the DIP Switch and Push

Buttons (the last 4 bits). To use the DIP Switch and the Push Buttons, we must configure PTH so that the bits are inputs. This

is done via the DDRH register located at $0262.

For DIP Switches: DDRH  $00

PPOORRTTKK
This is General Purpose I/O (GPIO) register located at $0032. In the Board, it is connected to the LCD controller. To use the

LCD Controller, we must configure PORTK so that some bits are outputs and other inputs. This is done via the DDRK register

located at $0033.

http://www.secs.oakland.edu/~llamocca/Courses/ECE470/Lab/Dragon12_light_hcs12_manual_A.pdf
http://www.secs.oakland.edu/~llamocca/Courses/ECE470/Lab/MC9S12DT256_Device%20User%20Guide.pdf

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

2 Instructor: Daniel Llamocca

EEXXAAMMPPLLEESS

 Read DIP Switches and place the result on the LEDs

DDRH  00

DDRB  FF
while (1)

 A  PORTH

 PORTB  A

end

ASM Code: unit5a.asm

 Read 4-bit data from DIP Switches (the last 4 LSBs) and display the hexadecimal value on all 7-segment displays.

DDRB  $FF, DDRP  $FF,

DDRH  $00

X  sevsegdata

PTP  $00

while (1)

 A  PORTH

 A  A AND $0F

 Display data on A on

 all 7-seg displays

 PORTB  B

end

* To Display data on A on

all 7-seg displays:
B  [[X] + [A]]

PORTB  B

ASM Code: unit5b.asm

 Read 4 bytes of data from memory and display the hexadecimal values on the four 7-segment displays. Then, rotate the 4

digits to the left every 1 second. For visual persistence, display each digit for only 1 ms. This delay was computed using a
bus speed of 24 MHz (this requires an extra piece of code, this code does not seem to run on the Debugger step by step).

X  sevsegdata

Y  myptp

co  0 ; This one indicates the ‘shift’

while (1)

 for j = 0 to 249

 for i = 0 to 3

 idx  i + co

 if i+co ≥ 4 then

 idx  i+co-4

 end

 Display data on

 ‘idx+mydata’ on display ‘i'

 Delay by 1 ms

 end

 end

 co  co+1

 if co ≥ 4 then

 co  0

 end

end

ASM Code: unit5c.asm

DIP SWITCH

1

0

PTH7

PTH6

PTH5

PTH4

PTH3

PTH2

PTH1

PTH0

PORTB7

PORTB6

PORTB5

PORTB4

PORTB3

PORTB2

PORTB1

PORTB0

LEDS

PTP0

PTP1

PTP2

PTP3

8
PORTB[7..0]

Address 8 bits

$BF

$86

$DB

$CF

$E6

$ED

$FD

...

0x1000

0x1001

0x1002

0x1003

0x1004

0x1005

sevsegdata 

$87

$FF

0x1007

0x1006

$EF

0x1008

0x1009

$F7

$FC

$B9

0x100A

0x100B

$DE

$F9

0x100D

0x100C

$F1

0x100E

0x100F

...

'0'

'1'

'2'

'3'

'4'

'5'

'7'

'6'

'8'

'9'

'A'

'B'

'D'

'C'

'E'

'F'

p g f e d c b a

PORTB 7 6 5 4 3 2 1 0

a

b

c

d

f

e

g

p

Address 8 bits

$0E

$0D

$0B

$07

$0A

$0B

$0C

...

0x1010

0x1011

0x1012

0x1013

0x1014

0x1015

myptp 

$0D0x1017

0x1016

0x1018

0x1019

0x101A

...

mydata 

i 

j 

co 

Data to be
shown

on 7-seg
displays

Cathode
control
of the 4
7-seg

displays

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-470/570: Microprocessor-Based System Design Fall 2014

3 Instructor: Daniel Llamocca

 Read the key pad, and display the hexadecimal value on all 7-segment displays.
 Output Input

PORTA[7..4]
PORTA[3..0] = 0001

idx = 0

PORTA[3..0] = 0010

idx = 1

PORTA[3..0] = 0100

idx = 2

PORTA[3..0] = 1000

idx = 3

i=0 0001 KEY0 KEY1 KEY2 KEY3

i=1 0010 KEY4 KEY5 KEY6 KEY7

i=2 0100 KEY8 KEY9 KEY10 KEY11

i=3 1000 KEY12 KEY13 KEY14 KEY15

 KEY = 4*i + idx

Main Routine getidx subroutine. Input: A(3..0)

DDRA  $F0, DDRB  $FF, DDRP  $FF, DDRH  $00

X  sevsegdata

PTP  $00

Y  PAdata

while (1)

 for i = 0 to 3

 PORTA  [PAdata + i]

 Delay 1 ms

 A  PORTA ; Read PORTA

 idx = getidx (A(3..0))

 If idx = 15 then

 Display blank on all 7-seg displays

 else

 key  i*4 + idx ;

 Display hex value of ‘key’ on all 7-seg displays

 end

 end

end

if A(3..0) = 1000

 idx = 3

elsif A(3..0) = 0100

 idx = 2

elsif A(3..0) = 0010

 idx = 1

elsif A(3..0) = 0001

 idx = 0

else

 idx = 15

end if

ASM Code: unit5d.asm

 RGB LED control via DIP switch. PORTP4 = RED LED cathode, PORTP5 = BLUE LED cathode, PORTP6 = GREEN LED

cathode. The anodes of these 3 LEDs are connected to PTM2. All the pins that control the LEDs are in negative logic.
Input: PTH[2..0]. PTH2 = Red, PTH1 = Green, PTH0 = Blue

Output: PTP[6..4]. /R = not (PTP4), /G = not (PTP6), /B = not (PTP5).
R G B Color

0 0 0 Black

0 0 1 Blue

0 1 0 Green

0 1 1 Cyan

1 0 0 Red

1 0 1 Magenta

1 1 0 Yellow

1 1 1 White

DDRH  $00, DDRM  $FF, PTM  $00; PTM2 = 0: Sets the anodes to ‘1’
while (1)

 A  PTH

A  A AND $07; A stores only the 3 LSBs or PORTH

 temp(4)  A(2), temp(6)  A(1), temp(5)  A(0); Rewires the bits of PTH[2..0] into PTP[6..4]

PTP  temp ; PTP controls the cathodes. If a bit in PTP is ‘1’, then that cathode is ‘0’

end

ASM Code: unit5e.asm

PTM2

PTP4

PTP6

PTP5

DIP SWITCH

1

0

PTH7

PTH6

PTH5

PTH4

PTH3

PTH2

PTH1

PTH0

/R

/G

/B

1

Address 8 bits

$10

$20

$40

$80

...

0x1010

0x1011

0x1012

0x1013

0x1014

0x1015

...

PAdata 

i 

key 

Row
Control
for the
KeyPad

15141312

111098

7654

3210

PORTA4

PORTA5

PORTA6

PORTA7

PORTA0 PORTA1 PORTA2 PORTA3

